Risk minimization, regret minimization and progressive hedging algorithms
نویسندگان
چکیده
منابع مشابه
Regret Minimization Algorithms for Pricing Lookback Options
In this work, we extend the applicability of regret minimization to pricing financial instruments, following the work of [10]. More specifically, we consider pricing a type of exotic option called a fixed-strike lookback call option. A fixed-strike lookback call option has a known expiration time, at which the option holder has the right to receive the difference between the maximal price of a ...
متن کاملHedging Under Uncertainty: Regret Minimization Meets Exponentially Fast Convergence
This paper examines the problem of multi-agent learning in N -person non-cooperative games. For concreteness, we focus on the socalled “hedge” variant of the exponential weights (EW) algorithm, one of the most widely studied algorithmic schemes for regret minimization in online learning. In this multi-agent context, we show that a) dominated strategies become extinct (a.s.); and b) in generic g...
متن کاملEfficient Constrained Regret Minimization
Online learning constitutes a mathematical and compelling framework to analyze sequential decision making problems in adversarial environments. The learner repeatedly chooses an action, the environment responds with an outcome, and then the learner receives a reward for the played action. The goal of the learner is to maximize his total reward. However, there are situations in which, in additio...
متن کاملRegret Minimization and Job Scheduling
Regret minimization has proven to be a very powerful tool in both computational learning theory and online algorithms. Regret minimization algorithms can guarantee, for a single decision maker, a near optimal behavior under fairly adversarial assumptions. I will discuss a recent extensions of the classical regret minimization model, which enable to handle many different settings related to job ...
متن کاملRegret Minimization With Concept Drift
In standard online learning, the goal of the learner is to maintain an average loss close to the loss of the best-performing function in a fixed class. Classic results show that simple algorithms can achieve an average loss arbitrarily close to that of the best function in retrospect, even when input and output pairs are chosen by an adversary. However, in many real-world applications such as s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2020
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-020-01471-8